Masses: Probing the Origins of Protostars

Héctor Arce, Alyssa Goodman, Mark Gurwell, Jes Jørgensen, Lars Kristensen, Katherine Lee, Stella Offner, Jaime Pineda, Sarah Sadavoy, John Tobin, and Eduard Vorobyov

1Center for Astrophysics | Harvard and Smithsonian 2State University of New York, Fredonia 3University of Toledo 4SKA Organization 5Yale University 6Niels Bohr Institute, Copenhagen 7University of Texas, Austin 8Max-Planck-Institut für extraterrestrische Physik, Garching 9Queen’s University, Kingston 10NRAO, Charlottesville 11University of Vienna

Science with the Submillimeter Array: Present and Future • November 4-5, 2019 • ASIAA, Taipei, Taiwan
Early low-mass star formation

Greene 01
Early low-mass star formation

Core-filament system
Taurus L1495 Hacar+ 13

Greene 01

Near-neighbor protostars
Perseus L1448 Tobin+16
Early low-mass star formation

Basic question: **how do protostars get their mass?**

- how do protostars stop accreting?
- role of outflows
- on what scale do protostars “inherit” environment properties?
- direction of angular momentum
- how do protostar groups relate to larger groups?
- multiscale fragmentation

The need for **finer resolution** – cores (10,000 au) to envelopes (1000 au) to disks (100 au)

The need for **complete statistical samples** – many observables have broad distributions (IMF, CMF, N-pdf,...)
MASSES overview

History
- Large SMA program 600 h 2014-2017
 - PIs Mike Dunham, Ian Stephens
- NASA Origins grant 2015-2019
 - PIs Tyler Bourke, Phil Myers

Specs
- $f = 230, 345 \text{ GHz, } \sigma_{1.3 \text{ mm}} \approx 1 \text{ mJy bm}^{-1}$
- $\Delta \theta = 1\text{-}4'' \text{ to } 20''$, $\Delta v = 0.09\text{-}0.3 \text{ km s}^{-1}$
- main lines $^{12}\text{CO}, ^{13}\text{CO}, C^{18}\text{O}, N_2\text{D}^+$
- SO, DCO$^+$, SiO, DCN, $C_3\text{H}_2$, $H_2\text{CO}$…

Survey
- Line, continuum 74 Class 0/I protostars
- same targets as 0.8 mm VLA continuum (VANDAM, Tobin+16)

Perseus molecular cloud complex

350 μm (gray), clumps (blue), starless cores (red), Class 0/I protostars (green) (Sadavoy+10, Zari+16, Mercimek+17)
MASSES papers 2015-2019

\(^8\)Frimann, S. et al. 2017, A&A
\(^8\)Pokhrel, R. et al. 2018 ApJ
\(^8\)Agurto-Gangas et al. 2019 A&A
\(^4\)Heimsoth, D. et al. 2019, in prep.

kinematic origins of multiplicity
neighbor outflows have random angles
random angles \(\rightarrow\) turb fragmentation
C\(^{18}\)O map sizes \(\rightarrow\) episodic accretion
outflows, filaments have random angles
hierarchical fragmentation Perseus
subcompact data release
grain growth in Per-emb-50
evolution disk and envelope masses
full data release
evolution CO outflow opening angles
envelope masses and vel gradients

10 refereed papers + 2 in prep.
\(u\) or \(g\) = undergrad or grad student 1\(^{st}\) author
MASSES papers 2015-2019

kinematic origins of multiplicity

neighbor outflows have random angles

random angles \rightarrow turb fragmentation

C18O map sizes \rightarrow episodic accretion

outflows, filaments have random angles

hierarchical fragmentation Perseus

subcompact data release

Aguro-Gangas et al. 2019 A&A
grain growth in Per-emb-50

evolution disk and envelope masses

full data release

evolution CO outflow opening angles

envelope masses and vel gradients

10 refereed papers + 2 in prep. u or g = undergrad or grad student 1st author
MASSES outflows and envelopes

CO 2-1 outflows Stephens et al. 19

C18O 2-1 envelopes Heimsoth et al. 19
MASSES line profiles and images in many lines

SVS13A and SVS13B images in >30 distinct lines – Stephens et al. 19

SWARM correlator opens many opportunities for astrochemistry

C18O 2-1 central spectra Stephens et al. 19
Accretion environment

Spectral evolution: Classes of SED evolve from red to blue as winds end infall and unveil the star-disk system (Adams+87)

Quantification: the “bolometric temperature” of an SED is the temperature of a blackbody having the same mean frequency \(\bar{\nu} \)

\[
T_{\text{bol}} \equiv \frac{\zeta(4) h \bar{\nu}}{4 \zeta(5) \kappa}
\]

(Myers & Ladd 93, Chen+ 95)

Application: outflow opening angle increases with \(T_{\text{bol}} \), first rapidly, then more slowly - Arce & Sargent 06 (AS06).

Caveat: \(T_{\text{bol}} \) and \(\Delta \theta \) appear to be “evolutionary” properties with time scale ~ 0.1 Myr, but their relation to \(t \) is still unclear.

<table>
<thead>
<tr>
<th>SED Class</th>
<th>(T_{\text{bol}}(K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>10</td>
</tr>
<tr>
<td>Class II</td>
<td>70</td>
</tr>
<tr>
<td>Class III</td>
<td>650</td>
</tr>
<tr>
<td>Pre-main sequence phase</td>
<td>2880</td>
</tr>
</tbody>
</table>

\(\Delta \theta \) \(v. T_{\text{bol}} \) Arce & Sargent (06)
Accretion environment 2

Spectral evolution: Classes of SED evolve from red to blue as winds end infall and unveil the star-disk system (Adams+87)

Quantification: the “bolometric temperature” of an SED is the temperature of a blackbody having the same mean frequency $\tilde{\nu}$

$$T_{bol} \equiv \frac{\zeta(4) h \tilde{\nu}}{4 \zeta(5) \kappa}$$

(Myers & Ladd 93, Chen+ 95)

Application: outflow opening angle increases with T_{bol}, first rapidly, then more slowly - Arce & Sargent 06 (AS06).

Caveat: T_{bol} and $\Delta \theta$ appear to be “evolutionary” properties with time scale ~ 0.1 Myr, but their relation to t is still unclear.
Accretion environment 3

What stops accretion? Collapse, feedback from neighbor stars, outflows

This work: Extend AS06 with better statistics and more info: \(\Delta \theta, \Delta \theta_{eo}, \) and \(M_e \) vs. \(T_{bol} \)

Result: 3 indep synchronized events: at same evolution milestone \(T_{bol} = 50-100 \) K:

1. outflow opens wide
2. envelope major axis orients toward disk plane
3. envelope mass dissipates until too low to feed disk & protostar

\[
\Delta \theta = 0.6
\]

1. \(\Delta \theta(T_{bol}) \)
Dunham+ 19

2. \(\Delta \theta_{eo}(T_{bol}) \)
Heimsoth+ 19

3. \(M_e(T_{bol}) \)
Andersen+ 18

curves: simple exponential fits with \(R \approx 0.6 \)
Accretion environment 3

What stops accretion? Collapse, feedback from neighbor stars, outflows

This work: Extend AS06 with better statistics and more info: $\Delta \theta$, $\Delta \theta_{eo}$, and M_e vs. T_{bol}

Result: 3 indep synchronized events: at same evolution milestone $T_{bol} = 50$-100 K:

1. outflow opens wide
2. envelope major axis orients toward disk plane
3. envelope mass dissipates until too low to feed disk & protostar

outflow opens until envelope can’t feed disk & protostar

1. $\Delta \theta (T_{bol})$
 Dunham+ 19
2. $\Delta \theta_{eo} (T_{bol})$
 Heimsoth+ 19
3. $M_e (T_{bol})$
 Andersen+ 18

curves: simple exponential fits with $R \approx 0.6$
Outflow directions

Are they set by magnetic alignment of outflow and filament axes?

One might expect magnetic alignment, since $\hat{B} \perp$ fil axis *(Planck)* and $\hat{B} \parallel$ outflow axis *(ALMA)*

MASSES analysis:

- select host filament
- fit skeleton, tangent direction
- fit outflow axis direction
- cumulative distribution $\Delta \theta (fil - of)$

Conclude: outflow directions are *not* set on filament scales (0.1 – 1 pc) - Stephens+17
Outflow directions

In multiple systems, are they set by angular momentum alignment of neighboring outflow axes?
One might expect angular momentum alignment, if a rotating circumbinary envelope becomes Keplerian

MASSES analysis: 19 angle pairs in 12 multiple systems

Conclude: outflow directions are not set on envelope scales (~1000 au) - Lee+ 16
candidate smaller-scale process: turbulent fragmentation – Fisher 04, Offner+16
Multiscale hierarchy suggests turbulent cascade down to transonic scales (Larson 81).

Multiplicity at each scale expected to depend on gravity, σ_T, σ_{turb} (Clarke+17).

This work: compare N and $N_j = M/M_j = 6MG^{3/2} \rho^{1/2} \pi^{-5/2} \sigma^{-3}$ at each scale.
Multiplicity in Perseus: thermal Jeans efficiency

<table>
<thead>
<tr>
<th>Parent</th>
<th>scale (pc)</th>
<th>N_{child}</th>
<th>$N_j = (M/M_j)_{parent}$</th>
<th>$\bar{\epsilon}j = N{child}/N_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloud</td>
<td>20</td>
<td>7 clumps/cloud</td>
<td>120</td>
<td>0.06</td>
</tr>
<tr>
<td>clump</td>
<td>1</td>
<td>16 cores/clump</td>
<td>74</td>
<td>0.20</td>
</tr>
<tr>
<td>core</td>
<td>0.05</td>
<td>1.1 envelopes/core</td>
<td>2.7</td>
<td>0.41</td>
</tr>
<tr>
<td>envelope</td>
<td>0.005</td>
<td>1.3 protostars/env</td>
<td>2.8</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Conclude:

1. Inefficient thermal Jeans fragmentation, efficiency $\bar{\epsilon}_j$ approaching 0.5 toward smaller scales

2. “Turbulent” Jeans fragmentation with σ_{turb} from line width predicts too few fragments

3. First study applied to four scales in the same complex, confirms Palau+15,17 in diverse regions

N_{child} surface density v. N_j surface density

- **Protostars in Envelope** $\epsilon^h = 0.5$
- **Envelopes in Core** $\epsilon^h = 0.4$
- **Cores in Clump** $\epsilon^h = 0.2$
- **Clumps in Cloud** $\epsilon^h = 0.06$

- Typical error

- [Pokhrel+18](#)
Summary

MASSES
large-scale SMA program, 600 h over 3 years
PIs: Dunham, Stephens, Bourke, Myers
goal: how protostars get their mass

Survey
74 Perseus protostars, 0.9 and 1.3 mm continuum, 12CO, C18O, N$_2$D$^+$ and ~30 other lines resolve envelopes on scales >300 au.
largest complete line survey at this scale

Accretion
3 independent measurements strengthen case
outflows important for final protostar mass

Outflow
no direction correlation w filaments, neighbors
outflow direction set below 1000 au

Multiplicity
may reflect hierarchy of thermal and turbulent
fragmentation $\epsilon_{\text{ Jeans (thermal)}} \to 1/2$

SMA Future
wSMA SWARM protocluster groups physics & chemistry