Cosmological Insights from SZE and X-ray Selected Cluster Samples

Joe Mohr with
Sebastian Bocquet, Sebastian Grandis, Matthias Klein and Maria Paulus

for DES, SPT and eROSITA

Panchromatic Panoramic Studies of Galaxy Clusters
ASIAA, Taipei, 12. March 2019

LMU- Munich
MPE- Garching
Overview

- Preliminaries:
 - Motivation, cluster selection and sample contamination

- SPT cosmology and mass calibration
- X-ray cluster finding over the DES area
- Prospects for eROSITA cluster cosmology

The primary references discussed in the talk:

Bocquet+18: *SPT Cluster Cosmology Constraints with Weak Lensing*

Klein+18a: *New method of confirming X-ray and SZE selected clusters (MCMF)*
http://adsabs.harvard.edu/abs/2018MNRAS.474.3324K

Klein+18b: *New Catalog of 2000 RASS Clusters over DES Area*

Grandis+18: *Forecasts of cluster cosmology for eROSITA*
Motivation

- X-ray & SZE cluster surveys → Cosmology!

- Also: baryon content, mass accretion history, AGN/star formation feedback, etc

- New deep/wide optical survey data (e.g., 5000 deg2 DES or HSC, KiDS) available w/ Euclid+LSST coming

- Goal: understand how best to combine DES with SZE/X-ray surveys for improved cluster selection and weak lensing mass calibration
Cluster Selection Methods

- Cluster finding: SZE, X-ray and Optical

In all cases, use cluster Red Sequence galaxies to estimate redshift
Cluster Selection Methods

- Cluster finding: SZE, X-ray and Optical
 - Use cluster Red Sequence galaxies to estimate redshift

- Selection in observable implies mass selection, given a mass-observable relation
 - Typically power law
 - Scatter in obs at fixed mass combines intrinsic & measurement components
 - Cosmology dependence easily modeled
 - Calibration through weak lensing, dynamical constraints
In SZE samples, contamination only through noise fluctuations
- To reasonable approx, only the cluster virial regions produce signal
- SPT cosmology sample starts with ~5% cont.
- Optical confirmation pushes to <1% cont.

In X-ray samples, contamination through AGN and noise fluctuations
- To good approx, only virial regions produce signal
- With good angular resolution one excludes unresolved AGN (~10% cont.)
- Optical confirmation pushes contamination to <1% cont.

In X-ray/SZE cluster cosmology, the primary challenge is mass calibration (: use weak lensing).

In Red Sequence samples, contamination through projection effects
- RS galaxies present in all cosmic structures
- Must model the contamination in cosmological analysis

In optical cluster cosmology, the challenges are mass calibration and also modeling contamination.
Overview

- Preliminaries:
 - Motivation, cluster selection and sample contamination

- SPT cosmology and mass calibration

- X-ray cluster finding over the DES area

- Prospects for eROSITA cluster cosmology
SPT-SZ Sample
Song+12 (720 deg2), Bleem+15 (2500 deg2)

- 2500 deg2 sample
 - 516 at $\xi > 4.5$
 - 387 at $\xi > 5.0$
 - Bleem+15

- High z subsample
 - 36 at $z > 1$
 - Max $z_{\text{spec}} = 1.47$
 - Bayliss+13
 - Max $z_{\text{phot}} = 1.72$
 - Strazzullo+18

- Clean sample with $M_{500} > 3 \times 10^{14} M_\odot$ to $z \sim 1.7$
Bayesian Framework:

- Forward model from halo mass function to observable-redshift distribution
- Adopt astrophysical observable-mass scaling relation (4+ params)
- Calibrate empirically using weak lensing

Then: explore parameter space using MCMC
Cosmology analysis coupled to empirical mass calibration with WL

Success implies: validated cluster sample

e.g., well understood selection, no/low contamination, masses calibrated accurately

Then: SPT single cluster masses ~25% uncertain (15% of this systematic)
: cluster physics studies can proceed!
Overview

- Preliminaries:
 - Motivation, cluster selection and sample contamination

- SPT cosmology and mass calibration

- X-ray cluster finding over the DES area

- Prospects for eROSITA cluster cosmology
The Data: DES and RASS

- 5000 deg2 griz imaging over ~600 nights on Blanco 4m
- Survey stats: ~0.9” FWHM riz ~2 mags deeper than SDSS
 - Adopting Year 3 catalogs and images

- ROSAT All Sky (X-ray) Survey, 2x104 sources over DES (<10% clusters)
- Survey stats: ~1.5’ FWHM (clusters unresolved at z>0.3)
 - Adopting RASS faint source reanalysis- 2RXS (Boller+16)

RASS Exposure over DES region
Tool for Identifying Clusters in RASS: Multi-Component Matched Filter (MCMF)
Klein+18a

- Designed for cluster confirmation and redshift estimation using priors from X-ray or SZE survey
 - Aperture scales with mass
 - R_{500} given mass proxy and redshift guess
 - Galaxies weighted by radial distance
 - Colors $g-r$, $r-i$, $i-z$ used simultaneously
 - Galaxies weighted by distance to RS
 - Studies of random positions allow one to quantify chance superpositions

- Empirical calibration of RS colors/widths using $\sim 10^3$ clusters that have spec-z's
MCMF Examples
Klein+18a

- Search w/candidate priors produces richness(z) or $\lambda(z)$
- Fit peaks (asymmetric) to measure photo-z (and uncertainty)
 - Spectacular performance of photo-z’s (RMS[$\Delta z/(1+z)$]~0.005)
Probability of source being random superposition (contamination) can be quantified using richness λ distributions along random lines of sight
- $f_{\text{cont}} < 0.05 \rightarrow 5\%$ random superposition

In addition, RASS AGN often have IR sources (WISE). AGN are outliers in richness to luminosity distribution compared to clusters
- this cut reduces contamination by ~50%
- So $f_{\text{cont}} < 0.05 \rightarrow 2.5\%$ final contamination

This solves problems that have plagued e.g., CODEX and MACS samples.

$$f_{\text{cont},i} = \frac{\int_{\lambda_i}^{\infty} f_{\text{rand}}(\lambda) d\lambda}{\int_{\lambda_i}^{\infty} f_{\text{obs}}(\lambda) d\lambda},$$
z>0.5 Examples
Each MARD-Y3 cluster has flux, redshift, X-ray luminosity

Using calibrated L_x-mass relation (Bulbul+18), we also provide mass estimates for each cluster

Mass sensitivity of SPT-SZ and MARD-Y3 similar at $z \sim 0.5$

1086 RASS clusters over 5000 deg2 with 2.6% contamination.

SPT-SZ $\sim 7x$ higher density than REFLEX

Extends to $z \sim 1$ (100+ at $z > 0.5$)
Points: MARD-Y3 $f_{\text{cont}} < 0.05$ sample LFs
- 1086 clusters, 2.6% cont
- corrected to flux limited sample (from S/N selected)

Lines: Forward modeled HMF using SPT cosmology (Bocquet+18) and L_x-mass relation (Bulbul+18)

Quantitative validation underway. Cosmology possible with DES WL mass calibration
SPT+DES Improvements through MCMF
Klein+ in prep

- SPT-SZ+DES analysis improves photo-z’s, pushes to lower S/N
 - 300 additional clusters identified between 4<S/N<4.5 → full SPT-SZ sample 816
- SPTpol+DES(+WISE) analysis provides sample of 321 clusters
 - 112 are overlapping, so total SPT sample is 1025 (~1300 including SPECS fields)

SPT-3G operating!
Direct Mass Calibration
Grandis+19 (archiv/1810.10553)

- Tremendous additional robustness comes with well calibrated shear and photo-z catalogs from DES (or HSC, KiDS)

- Weak lensing mass calibration
 - Adopt individual shear profiles and redshift distribution as constraints
 - At each iteration in chain (7 cosmo, 4 scaling, 2 nuisance) solve for masses

- Our approach empirically constrains mass-obs relation (including scatter!)

Figure 2 from eROSITA forecast paper
Overview

- Preliminaries:
 - Motivation, cluster selection and sample contamination

- SPT cosmology and mass calibration

- X-ray cluster finding over the DES area

- Prospects for eROSITA cluster cosmology
Can we probe ICM in groups?

- **Launch**: From Baykonour, Proton–Block-DM
 June/July 2019
- **3 Months**: flight to L2, PV and calibration phase
- **4 years**: 8 all sky surveys (**eRASS:1-8**; scanning mode: 6 rotations/day)
 - Re-visit LMC & SMC every ~month
 (to L_{0.5-2 \text{ keV}} \sim 10^{34} \text{ erg/s})
- **2.5 years**: pointed observations, including ~20% GTO. 1 AO per year
- **Ground Segment**: 2 x 70m antennae (Bear Lakes and Ussirisk), daily contact (up to ~4 hours); telemetry transfer directly to MPE via Moscow NPOL/IKI Control Center
The “robust cosmology sample”

- \(n_\gamma > 40 \)
- Existence at 6\(\sigma \)
- Extension at 3\(\sigma \) (Grandis+i.p.)
- Low contamination

\[M_{\text{obs}} > 2 \times 10^{14} M_\odot \]

Cosmological modelling

affected by baryon feedback
e.g. mass function Bocquet+16

- Total: 11k
- 0.5, 1.0: 5.3k
- 1.0: 0.4k

\(M_{500c} \) vs. \(z \) plot with
- \(n_\gamma = 40 \)
- \(n_\gamma = 15 \)
- \(M = 2 \times 10^{14} M_\odot \)
- \(M = 5 \times 10^{13} M_\odot \)
The “maximal sample”

clusters

$M_{500c} \, [M_\odot]$

10^{15}

10^{14}

10^{13}

10^{12}

10^{11}

10^{10}

10^9

10^8

10^7

10^6

10^5

10^4

10^3

10^2

10^1

10^0

z

$n_\gamma > 15$

Existence at 3σ

No extent information

Higher contamination, no extent information

Require cleaning with deep optical data ($z<1.1$) + IR data ($z>1.1$)

Klein+18, i.p.

<table>
<thead>
<tr>
<th>Total</th>
<th>$(0.5, 1.)$</th>
<th>$1. <$</th>
</tr>
</thead>
<tbody>
<tr>
<td>93k</td>
<td>28k</td>
<td>2.6k</td>
</tr>
</tbody>
</table>
Summary

X-ray/SZE+optical wide area surveys offer big advantages

● Larger numbers of clusters → implies more precise cosmology
● Lower sample contamination → implies more robust cosmology
● Weak lensing mass calibration → implies more accurate cosmology

Demonstration on X-ray(RASS) and SZE(SPT) surveys

● ~1000 new RASS selected clusters overlapping DES
● Doubling of SPT sample to ~1025

eROSITA sample 1 to 2 orders of magnitude larger still

● Promising sample for cosmology and structure formation studies
Focus:
- Observational cosmology and structure formation studies

Survey Projects
- South Pole Telescope
- Dark Energy Survey
- eROSITA
- Euclid and LSST
- D-MeerKAT

Group Members:

Research Scientists
- Sebastian Bocquet
- Matthias Klein
- Veronica Strazzullo

Euclid subgroup
- Martin Kümmel
- Holger Israel
- Thomas Vassallo
- Koshy George

Postdoc Fellows
- Natasha Maddox
- Maurillio Panella
 +Searching!

PhD Students
- Raffaella Capasso
- Sebastian Grandis
- Maria Paulus
- Peter Lustig
 +Searching!

Some past members
- Kai-Feng Chen, Dr. Nikhel Gupta (Melbourne), Dr. I-Non Chiu (ASIAA),
- Dr. David Rapetti (UC Boulder), Prof. Alex Saro (Trieste), Prof. Shantanu Desai (IIT, Hyderabad),
- Prof. Yen-Ting Lin (ASIAA), Prof. Subha Majumdar (TIFR)
References to Recent Papers from LMU Group

- Capasso+19 Dynamical Study of SPT clusters
 - http://adsabs.harvard.edu/abs/2019MNRAS.482.1043C

- Bulbul+18 X-ray scaling relations to z~1.3

- Chiu+18 Baryonic scaling relations to z~1.3
 - http://adsabs.harvard.edu/abs/2018MNRAS.478.3072C

- Grandis+18 Forecasts of cluster cosmology for eROSITA

- Klein+18 New method of confirming X-ray and SZE selected clusters
 - http://adsabs.harvard.edu/abs/2018MNRAS.474.3324K

- Stern+18 Weak lensing mass calibration using DES data

- Strazzullo+18 Study of galaxy population in 5 highest z SPT clusters with HST/Spitzer
 - http://adsabs.harvard.edu/abs/2018arXiv180709768S

- Dietrich+17 WL mass calibration using Magellan and HST imaging
 - http://adsabs.harvard.edu/abs/2017arXiv171105344D

- Gupta+17 Study of cluster radio galaxies
 - http://adsabs.harvard.edu/abs/2017MNRAS.467.3737G

- Hennig+17 Study of SPT cluster galaxy populations to z~1.1
 - http://adsabs.harvard.edu/abs/2017MNRAS.467.4015H

- Chiu+16 Stellar masses in low mass clusters and groups
 - http://adsabs.harvard.edu/abs/2016MNRAS.458..379C

- Chiu+16 Baryonic properties in z~0.9 SPT clusters
 - http://adsabs.harvard.edu/abs/2016MNRAS.455..258C