Evidence for dynamically important magnetic fields in massive star and cluster formation in RCW57A

Eswaraiah Chakali
Postdoc, Institute of Astronomy
NTHU, Taiwan

Shih-Ping Lai, Tao-Chung Ching, Jia-Wei Wang
(NTHU, Taiwan)

W. P. Chen (NCU, Taiwan), M. Tamura (NAOJ, Japan), Dan P. Clemens (BU, USA),
A. K. Pandey, G. Maheswar, S. Sharma
(ARIES, India)

A. M. Magalhaes (USP, Brazil), S. Nishiyama (MUE, Japan), J. Kwon (NAOJ, Japan)
Y. Nakajima (HU, Japan), C. R. Purcell (SifA, Australia)

SMA science in the next decade
27-28 Oct 2016
ASIAA
Influence of B-fields on expanding ionization fronts

I-fronts \Rightarrow accelerated

Eg., Galactic bubbles of young HII regions elongated along B-field in Galactic plane.
Easier for charged particles to follow B-fields than perpendicular to them (Pavel & Clemens 2012)

B-fields provide anisotropic pressure

Filament \Rightarrow HII region \Rightarrow bipolar bubble
(2D HD simulations: Bodenheimer+ 1979; Deherveng+ 2015)
RCW57A: Fragmentation and active star formation

Still embedded in the molecular cloud, located at 2.4-2.8 kpc
Consist: eight 7.5OV (Persi+ 1994)
more than 130 YSOs, 5 IRS sources, 9 water + methanol masers

<table>
<thead>
<tr>
<th>Core</th>
<th>T_d (K)</th>
<th>$M_{\text{core}}^{0.35}$ pc (M_\odot)</th>
<th>$M_{\text{env}}^{0.03}$ pc (M_\odot)</th>
<th>L_{bol} (L_\odot)</th>
<th>$M_{\text{env}}/L_{\text{bol}}^{0.6}$ ($M_\odot/L_\odot^{0.6}$)</th>
<th>T_{bol} (K)</th>
<th>$\langle N_{\text{H}_2}\rangle$ pc (105 cm$^{-3}$)</th>
<th>$\langle n_{\text{H}_2}\rangle$ pc (103 cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-M1</td>
<td>21</td>
<td>500-10^4</td>
<td>1.1-0.5</td>
<td><80</td>
<td>1.4</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1-M2</td>
<td>16</td>
<td>540</td>
<td>0.2-1.1</td>
<td><70</td>
<td>3.0</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3-M4</td>
<td>35</td>
<td>400</td>
<td>0.01-0.03</td>
<td>120-170</td>
<td>2.2</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3-M5</td>
<td>35</td>
<td>460</td>
<td>0.02-0.04</td>
<td>110-160</td>
<td>2.6</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3-C3</td>
<td>33</td>
<td>490</td>
<td>0.03-0.2</td>
<td><60</td>
<td>2.7</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4-M6</td>
<td>19</td>
<td>350</td>
<td>0.01-0.1</td>
<td><80</td>
<td>2.9</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5-M8</td>
<td>13.5</td>
<td>500</td>
<td>0.15-1.0</td>
<td><90</td>
<td>3.9</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NIR color-color diagram

Identification: foreground & background stars, and YSOs
B-fields play active role or being passive and dictated by ionization fronts?
B-fields play active role!

\[B = Q \sqrt{4\pi \rho \left(\frac{\sigma_{V_{LSR}}}{\sigma_{TH}} \right)} \]

(Chandrasekhar & Fermi 1953)

Mean B-field strength: 74±7μG

\[P_B = \frac{B^2}{8\pi} \]
\[P_{turb} = \rho \sigma_{turb}^2 \]
\[P_{th} \sim 2n_e kT_e \]

=> \(n_e, T_e \) are taken from (Danziger 1974)

=> \(n_e = 22.2 \text{ cm}^3; T_e = 9666\text{K} \)

Thermal pressure: 5.93x10^{-11}
Radiative pressure: 2.7x10^{-10}

\[P_{rad} = \frac{F}{c} \]

=> \(P_B > P_{TURB}, P_{TH} \)

=> \(P_B \sim P_{RAD} \) (both act in the same direction)

B-fields play active role!!

<table>
<thead>
<tr>
<th>Region</th>
<th>(P_B) (dyn cm(^{-2}))</th>
<th>(P_{turb}) (dyn cm(^{-2}))</th>
<th>(P_B/P_{turb})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.78e-10</td>
<td>6.78e-11</td>
<td>4.1</td>
</tr>
<tr>
<td>B</td>
<td>1.80e-10</td>
<td>1.12e-10</td>
<td>1.6</td>
</tr>
<tr>
<td>C</td>
<td>1.91e-10</td>
<td>5.64e-11</td>
<td>3.4</td>
</tr>
<tr>
<td>D</td>
<td>3.58e-10</td>
<td>1.71e-10</td>
<td>2.1</td>
</tr>
<tr>
<td>E</td>
<td>1.26e-10</td>
<td>6.93e-11</td>
<td>1.8</td>
</tr>
</tbody>
</table>

=> \(P_B \sim 2P_{TURB} \)

Mean B-field pressure: 2.27x10^{-10} (dyn/sq.cm)
Mean turbulent pressure: 9.53x10^{-11} (dyn/sq.cm)
One-one correspondence b/n B-fields and bipolar bubble

Schematic diagram - plausible scenario: B-field driven formation and evolution of filament and bipolar bubble
Morphological correlations among filament, bipolar bubble and B-fields in RCW57A: Implications

- Massive star formation (B-field guided funnelling material flows on to the cores)
- Cluster formation (protostellar turbulence and gravitational in flows guided by B-fields)
NGC1333 IRAS 4A (Girart+ 2006) low mass protostellar system

G31.41+0.31 (Girart+ 2006) high mass molecular clump

G240.31+0.07 (Qiu+ 2014) Massive star-forming region

NGC6334 (Li+ 2015) Massive star-forming region

Massive stars form similar to the low-mass stars or by coalescence of multiple cores?
Most of the stars – in clusters (Lada & Lada 2003)
- 1 pc scale clumps
- 10^2 to 10^3 Msun
- gravity, turbulence and magnetic fields

Possible factors for the low star-formation rate:
Turbulence + B-fields + outflow

Simulations of outflow regulated cluster star-formation:
(I) turbulence dissipation rate $>$ outflow injection rate
(II) kept clump close to virial equilibrium
(III) B-field structure w.r.t cloud structure, and outflows, inflows orientation

-but supersonic turbulence decay rapidly
(\sim on turbulence crossing time)
- Therefore, supersonic turbulence should be replenished
Energy dissipation vs injection rates => outflow feedback to maintain turbulent motions

\[
\frac{dP_{\text{turb}}}{dt} + \frac{dP_{\text{out}}}{dt} = 0
\]

Except \(\rho\) Oph outflow momentum injection rate is comparable or larger than the turbulence momentum dissipation rate

Outflows maintain the supersonic turbulence

Nakamura & Li (2014)
Expected geometrical correspondence b/n filament, outflows (bipolar bubble) and B-fields according to outflow regulated cluster formation.

NIR polarization vector map

Schema depicting outflows and inflows

Serpens cloud core (Sugitani+ 2010)
Summary

- B-fields vs filament and bipolar bubble

- These study traces - pre-existing conditions in favour of massive star and cluster formation

- If B-fields are important in massive star-formation, we expect coherent B-fields upto the clump and core scales.

- B-fields vs cluster formation – via outflow regulated cluster formation

- sub-mm polarimetry at clump-cores scales is essential

H-band vectors on 870 micron ATLASGAL map
Black contours: 450 micron P-ArTeMis
Thanks for your kind attention!
In filament: massive cores & proto stars
- 8 clumps with mass > 250Msun
- massive (> 20 Msun) stars: Class0/I
 (Andre+ 2008, Purcell+ 2009)

In HII region: cluster
- more than 130 early type YSOs
- at least 8 O7.5V stars (Persi+ 1994)
- yet unrecognized many O-type stars
 (Townsley 2009)
Massive stars:

- circumstellar disks form via conservation of angular momentum (Terebey+ 1984)
- angular momentum – infalling material – disk growth (York & Bodenheimer 1999)
- accretion of material on the star

But

- soon after massive star formation – UV radiation quenches further in falling material and accretion (McKee & Tan 2003)
- B-fields can remove angular momentum – by magnetic breaking (Machida+ 2011)
- however massive stars are forming despite of these problems (Patel+ 2005, Zapata+ 2009)

How massive stars form?

- similar to low mass stars? (Giarart+ 2009, Qiu+ 2014)
- colasence of multiple cores – reduced magnetic braking – dynamical interaction – redistribution of angular momentum (Bonnel & Bate 2002, Zhang+ 2015)
- dissipation of prestellar envelopes (Yen+ 2015)
- misalignment b/n B-field and rotational axis
- turbulence
- ionization degree
Serkowski law – dust size

Optical/UV:

\[P_\lambda = P_{max} \exp\left\{ -K \ln^2(\lambda_{max}/\lambda) \right\} \]

NIR \(P_\lambda \propto \lambda^{-\beta} \) Where \(\beta = 1.6 - 2.0 \)

For background stars: \(\beta = 2.22 \pm 0.02 \) and \(1.61 \pm 0.01 \) for \(P(J)/P(K_s) \), and \(P(H)/P(K_s) \), respectively.

Foreground dust properties are different from those in the star-forming region.
Star-formation rate per free-fall time: observations vs predictions

Table 4

<table>
<thead>
<tr>
<th>Name</th>
<th>N(_{\text{Class0/I}})</th>
<th>SFR(_{\text{ff,obs}}) (^{(%)})</th>
<th>SFR(_{\text{ff,b}}) (^{(%)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>B59</td>
<td>4</td>
<td>7.9</td>
<td>1.3</td>
</tr>
<tr>
<td>L1551</td>
<td>3</td>
<td>5.1</td>
<td>1.3</td>
</tr>
<tr>
<td>L1641N</td>
<td>14</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Serpens Main</td>
<td>14</td>
<td>1.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Serpens South</td>
<td>42</td>
<td>2.1</td>
<td>4.3</td>
</tr>
<tr>
<td>(\rho) Oph</td>
<td>23</td>
<td>1.3</td>
<td>4.2</td>
</tr>
<tr>
<td>IC 348</td>
<td>16</td>
<td>1.8</td>
<td>3.3</td>
</tr>
<tr>
<td>NGC 1333</td>
<td>40</td>
<td>6.1</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Notes. The lifetime of protostars is assumed to be 0.4 Myr for all the regions.

\(^{a}\) SFR\(_{\text{ff,obs}}\) is derived from Equation (13).

\(^{b}\) SFR\(_{\text{ff}}\) is derived from Equation (10) with \(f_B = 1\).

STARFORMATION EFFICIENCY

Slow SFR\(_{\text{ff}}\): few (1-8)\%

(life time of Class I: 0.4 Myr)

Rapid SFR\(_{\text{ff}}\): 10%-few x10%

(life of time of Class I: \(10^4\) yr \(\sim\) 0.01 Myr)

\[\text{SFR}_{\text{ff,obs}} \approx 0.01 \left(\frac{N_{\text{obs}}}{20}\right) \left(\frac{M_{\text{cl}}}{500 M_\odot}\right)^{-3/2} \left(\frac{M_*}{0.5 M_\odot}\right) \times \left(\frac{t_{\text{life}}}{0.4 \text{ Myr}}\right)^{-1} \left(\frac{R_{\text{cl}}}{0.5 \text{ pc}}\right)^{3/2}. \quad (13)\]

\(M_*\): mean protostar mass; \(t_{\text{life}}\): life time of Class0/I

\[\text{SFR}_{\text{ff}} \approx 0.13 f_B f_{\text{out}} f_w^{-1} V_w^{-1} G M_{\text{cl}} R_{\text{cl}}^2 t_{\text{ff}} \]

\[= 0.02 \left(\frac{f_B}{0.5}\right) \left(\frac{f_{\text{out}}}{0.3}\right)^{-1} \left(\frac{f_w}{0.4}\right)^{-1} \left(\frac{V_w}{10^2 \text{ km s}^{-1}}\right)^{-1} \times \left(\frac{M_{\text{cl}}}{500 M_\odot}\right)^{1/2} \left(\frac{R_{\text{cl}}}{0.5 \text{ pc}}\right)^{-1/2}. \quad (10)\]

\(f_B\): magnetic support (0-1);

\(f_{\text{out}}\): fraction of outflow momentum converted into turbulent momentum

\(f_w\): fraction of the outflow contributed as molecular outflows

\(V_w\): outflow speed

Nakamura & Li (2014)

Star-formation rate per free-fall time: observations vs predictions
Impact of outflow feedback: Outflows with enough energy disperse surrounding gas

=> quenches further SF ($\eta_{\text{out}} > 1$)

$$\eta_{\text{out}} \equiv -\frac{2E_{\text{out}}}{W}$$

E_{out}: outflow kinetic energy

W: clump gravitational energy

=> $\eta_{\text{out}} \approx 0.1$ minor role of outflow feedback on global clump dynamics; SF may proceed for a long time

Table 3
Observations of Nearby Parsec-scale Cluster-forming Clumps

<table>
<thead>
<tr>
<th>Name</th>
<th>dP_{turb}/dt</th>
<th>dP_{out}/dt</th>
<th>$(dP_{\text{out}}/dP_{\text{turb}})$</th>
<th>P_{out}</th>
<th>E_{out}</th>
<th>η_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B59</td>
<td>1.0×10^{-5}</td>
<td>8.5×10^{-5}</td>
<td>8.5</td>
<td>2.6</td>
<td>4</td>
<td>0.62</td>
</tr>
<tr>
<td>L1551</td>
<td>1.8×10^{-5}</td>
<td>6.3×10^{-4}</td>
<td>35</td>
<td>19</td>
<td>130</td>
<td>5.0</td>
</tr>
<tr>
<td>L1641N</td>
<td>1.3×10^{-4}</td>
<td>1.3×10^{-3}</td>
<td>10</td>
<td>80</td>
<td>273</td>
<td>0.9</td>
</tr>
<tr>
<td>Serpens Main</td>
<td>3.4×10^{-4}</td>
<td>2.5×10^{-3}</td>
<td>7.4</td>
<td>75</td>
<td>445</td>
<td>0.27</td>
</tr>
<tr>
<td>Serpens South</td>
<td>2.1×10^{-4}</td>
<td>6.5×10^{-4}</td>
<td>3.1</td>
<td>19</td>
<td>165</td>
<td>0.28</td>
</tr>
<tr>
<td>ρ Oph</td>
<td>2.9×10^{-4}</td>
<td>1.2×10^{-4}</td>
<td>0.4</td>
<td>3.6</td>
<td>61</td>
<td>0.03</td>
</tr>
<tr>
<td>IC 348</td>
<td>2.5×10^{-4}</td>
<td>4.7×10^{-4}</td>
<td>1.9</td>
<td>14</td>
<td>26</td>
<td>0.01</td>
</tr>
<tr>
<td>NGC 1333</td>
<td>3.0×10^{-4}</td>
<td>1.1×10^{-3}</td>
<td>3.6</td>
<td>32</td>
<td>119</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Notes.

a The outflow momentum injection rates are highly underestimated. See Section 3 for details. The dynamical time of 3×10^4 yr is also adopted to derive the outflow momentum injection rates.

b The following two conditions are assumed: (1) the outflow gas is optically thin, and (2) the outflow is in the plane-of-sky, and the mean inclination angle of $\xi = 57.3$° is applied for all the outflow components.