

Interstellar & Circumstellar Fullerenes

Jeronimo Bernard-Salas

J. Cami, E. Peeters, A.P. Jones, E.R. Micelotta, M. Otsuka, C. Kemper, M. Groenewegen, G.C. Sloan

Interstellar & Circumstellar Fullerenes

Jeronimo Bernard-Salas

J. Cami, E. Peeters, A.P. Jones, E.R. Micelotta, M. Otsuka, C. Kemper, M. Groenewegen, G.C. Sloan

Sloan, P7-9 Micelotta, P7-6

Otsuka,

Kemper,

Fullerenes

- Hollow molecule made of carbon
- Discovered by Sir H. Kroto et al. in 1985
- Most popular C60 (soccer ball)

Importance

Nanotechnology: heat resistance and super-conductivity (18 K)

Material sciences: electronics (promotes e- transfer)

Medicinal: use as targeting drug delivery (e.g. cancer)

melanoma)

Importance

Nanotechnology: heat resistance and super-conductivity (18 K)

Material sciences: electronics (promotes e- transfer)

Medicinal: use as targeting drug delivery (e.g. cancer)

melanoma)

→ Very stable molecule: survive conditions of the ISM

C₆₀ in Diverse Environments

post-AGBs, pPNe, PNe, HII regions, Reflection Nebulae, Stars, YSOs

- Fullerenes formed in the post-AGB to PN phase
- Fullerenes survive the harsh conditions of the ISM

Sellgren et al. (2010)

Importance in Space

- Very large Molecule (60-70 atoms!) (before just 13)
 Crucial to understand formation & evolution of large organics
- Share many physical properties with PAHs
 Understand one of the largest reservoirs of organic material in space
- Very stable, survives the harsh conditions in the ISM Contribute interstellar extinction, heating, complex chemical reactions?

Importance in Space

- Very large Molecule (60-70 atoms!) (before just 13)
 Crucial to understand formation & evolution of large organics
- Share many physical properties with PAHs
 Understand one of the largest reservoirs of organic material in space
- Very stable, survives the harsh conditions in the ISM Contribute interstellar extinction, heating, complex chemical reactions?

Excitation - Formation - Environment

Excitation: Thermal vs Fluorescence

Fullerene rich objects show:

- Constant 17.4/18.9 µm ratio
 (Otsuka et al. 2013) → POSTER P7-8
- Weak or no 7.0 and 8.5 µm bands
- Difficult to reconcile observations with thermal models
- → But fluorescence predicts too high 7.0 µm bands

Bernard-Salas et al. (2012), Cami et al. (2011)

Spatial Distribution, Tc1

Not consistent with thermal →
 Fluorescence

Bernard-Salas et al. (2012)

Detection of C₆₀+

Formation Routes

6-9µm plateau - HAC

6-9µm plateau - HAC

 Plateau consistent with model of HAC nano-particles (Bernard-Salas et al. 2012, Jones et al. 2013)

Closed Network Growth

 Metallofullerenes: Symmetry breaking activates silent modes, e.g. 6-9µm

 Reaction PAHs-Fullerenes: insight on how fullerenes aggregate in c-grains

Dunk et al. (2012, 2013)

Fullerenes in Evolved Stars

- Not common: 3% of Galactic C-rich PNe (Otsuka et al. 2013 → P7-8)
- Do not require strong UV fields and are bluer (Sloan et al., sub. → P7-9)
- Mostly in C-rich environments, but also O-rich! (Gielen et al. 2011)

Carbon-rich evolution?

- Strong fullerenes → weak PAHs, plateaus
- Weak fullerenes → PAHs
- All show 30µm feature! Correlates with dust (Kemper et al. P7-3)

Zhang & Kwok (2013)

We need a consistent picture for carbon-rich evolution

Summary

- Fullerenes detected in many circumstellar & interstellar environments:
 - Formed in the post-AGB to PNe phase
 - Survive the ISM
- Excitation due to fluorescence (mixture of species?)
- Formation is still debated:
 - Photo-chemical processing of HACs /Arophatic
 - Closed Network Growth

- →Evolution of organic material
- Role in the ISM?
 Extinction, chemistry, molecular to solid state physics,...

Summary

- Fullerenes detected in many circumstella Otsuka, environments: Micelotta.
 - Formed in the post-AGB to PNe phase
 - Survive the ISM
- Excitation due to fluorescence (mixture of species?)
- Formation is still debated:
 - Photo-chemical processing of HACs /Arophatic
 - Closed Network Growth

- →Evolution of organic material
- Role in the ISM?
 Extinction, chemistry, molecular to solid state physics,...

POSTERS
Sloan, P7-9
Otsuka, P7-8
Micelotta, P7-6
Kemper, P7-3