Radio transients: Recent results and future prospects

James Miller-Jones

Email: james.miller-jones@curtin.edu.au
Outline

• Review of the different expected classes of radio transients

• Recent observational results on new classes of transient
 – GCRT J1745-3009 – the “burper” source
 – RRATs - Rotating Radio Transients
 – Lorimer burst – is it real?
 – Survey results
 – Bower transients and revised significance

• Detecting new radio transients: surveys
 – ATA
 – V-FASTR
 – The LOFAR Transients Key Science Project
 – ThunderKAT
 – ASKAP-VAST, ASKAP-CRAFT
What’s all the excitement?

• Physics in extreme environments
• Probes of the intergalactic medium
• Unexplored parameter space
• Radio regime:
 – Unaffected by intervening dust and gas
 – Ground-based
 – New technology and processing power expanding available fields-of-view
 – Immediate localization with arcsecond precision
Classes of radio transients

- Well-studied sources ("known knowns")
- Many new types of source discovered in recent years ("known unknowns")
 - GCRT J1745-3009
 - RRATs
 - Tidal disruption events (Swift J1644+57)
- Separate by timescale and duration (Frail et al. 2011)
- Timescale:
 - Short (< few s): coherent emission (high T_B)
 - Long (> few s): incoherent (synchrotron) emission
- Location
 - Galactic: repeated events
 - Extragalactic: cataclysmic events

Hyman et al. (2005)
McLaughlin et al. (2006)
Zauderer et al. (2011)
Fast transients (<1s): time series

- Pulsars and NS phenomena (RRATs, nulling pulsars)
- Solar bursts (Type II and III)
- Flare stars
- Brown dwarfs
- Planets (Jupiter, Saturn, exoplanets)
- “Lorimer” bursts
- Annihilating black holes
- Coalescing NS
- EM counterparts to GW sources
- ETI signals?

Kramer et al. (2006)
Fischer et al. (2011)
Transient phase space

- Short timescales imply coherent processes

\[T_B = \frac{c^2 S_v}{2\nu^2 k_B \Omega} \]

Keane et al. (2011)
Issues with fast transient detection

- Data processing
- Propagation effects in the ISM:
 - Temporal broadening
 - Dispersion
 - Worse at low frequencies (where FOV is highest!)

Macquart (2011)
GCRT J1745-3009: the “burper”

- Discovered in 330-MHz Galactic Centre monitoring
- 77-min periodicity
- ~7% detection rate
- Never detected at any other frequency
- Steep-spectrum (coherent?) emission
- $T_B = 10^{12} K(d/70\text{pc})^2$
- High CP suggests possible subsolar flare star progenitor

Hyman et al. (2005, 2007)
Rotating radio transients (RRATs)

- Single, dispersed bursts of duration 2-30ms
- Repeat with same DM
- Recurrence time 4min-3h
- Periodicities 0.4-7s
- Concentrated towards the Plane
- Peak flux densities 0.1-3.6 Jy
- Likely rotating NSs

$DM = \int n_e \, dl$

McLaughlin et al. (2006)
RRATs continued

• One X-ray counterpart showing pulsations

• Also extended emission (PWN morphology)

• Evidence for glitches

• Possible link (B, P) with magnetars/XDINs
 – Tail end of intermittency distribution?
 – In process of turning off?
 – High B, long P?

Miller et al. (2011)
The Lorimer burst

- 30 Jy burst, <5ms in duration
- Detected in 3 independent beams at Parkes
- 3 degrees from SMC
- Dispersed:
 - Lower frequencies delayed (ν^{-2})
 - Pulse broadened at lower frequencies (ν^{-4})
- Inferred DM 375 cm$^{-3}$ pc
 - Implies extragalactic origin ($z=0.3$)
- Must be coherent emission from a compact region

Lorimer et al. (2007)
The Lorimer burst: astronomical?

• 16 similar swept-frequency bursts detected by Burke-Spolaor et al. (2011): *perytons*

• Clearly terrestrial:
 - Deviations from dispersive delay law (“kinks”)
 - All occurred in daylight
 - Natural or man-made?

• Is the Lorimer burst a peryton?
 - Similar delay
 - Perytons didn’t show pulse width evolution

• Second, non-terrestrial burst seen at DM of 745 cm\(^{-3}\)pc (Keane et al. 2011)
Slow transients (>1s): imaging

- Primarily explosive events or outflows
- Often synchrotron emission (occasionally thermal)
- Known source classes
 - Novae
 - Cataclysmic Variables (CVs)
 - X-ray Binaries (XRBs)
 - Magnetar outbursts
 - Supernovae (SNe)
 - Active Galactic Nuclei (AGN)
 - Tidal disruption events
 - Gamma-ray bursts (GRBs)
- Also scintillation (non-intrinsic variability) and ESEs
 - Probe of the scattering medium (ISM/IGM)
Incoherent synchrotron processes

- Shock-accelerated electrons and magnetic fields
- Become optically thin later at lower frequencies
- Limited to 10^{12} K (caveat beaming)
- Timescales: source size/outflow velocity

van der Horst et al. (2008)
Scattering and the ISM

• Interstellar scintillation creates intra-day variability of compact sources

• Probes μas source structure and scattering medium
 – Are AGN emitting above the Compton brightness limit?
 – Does ISS vary as a function of redshift?
 • Probing properties of IGM

• Extreme scattering events
 – Galactic lenses refracting emission
 – n_e, d, v of lenses
Slow transient surveys review

- Ofek et al. (2011) reviewed the transient survey literature
- Mainly upper limits; 3 surveys detected significant numbers of transients
- Radio sky quieter than γ-ray sky (0.1-3% of persistent sources are highly variable in the 0.1mJy-1Jy range)

Table 1

<table>
<thead>
<tr>
<th>ν GHz</th>
<th>Area deg2</th>
<th>Direction deg</th>
<th>$\Delta \theta$ $''$</th>
<th>N_{ep}</th>
<th>δt</th>
<th>Δt</th>
<th>rms mJy</th>
<th>Sources</th>
<th>Tran.</th>
<th>Var.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84</td>
<td>2776</td>
<td>$\delta < -30$</td>
<td>~ 45</td>
<td>2a</td>
<td>12 hr</td>
<td>1 day–20 yr</td>
<td>2.8</td>
<td>29730</td>
<td>15</td>
<td>~ 10</td>
<td>[14]</td>
</tr>
<tr>
<td>1.4</td>
<td>0.22</td>
<td>$l = 150$, $b = +53$</td>
<td>4.5</td>
<td>3</td>
<td>6 hrs</td>
<td>19 d, 17m</td>
<td>0.015</td>
<td>\ldots</td>
<td>0</td>
<td>2%</td>
<td>[1]</td>
</tr>
<tr>
<td>1.4</td>
<td>2.6</td>
<td>$l = 151$, $b = +24$</td>
<td>60</td>
<td>16</td>
<td>12 hrs</td>
<td>1-12 d, 1-3 m</td>
<td>0.7</td>
<td>245</td>
<td>0</td>
<td>$\sim 1%$</td>
<td>[2]</td>
</tr>
<tr>
<td>1.4</td>
<td>120</td>
<td>S. Galactic Cap</td>
<td>5</td>
<td>2</td>
<td>days</td>
<td>7 yr</td>
<td>0.15</td>
<td>9086</td>
<td>0</td>
<td>1.4%</td>
<td>[3]</td>
</tr>
<tr>
<td>1.4</td>
<td>2500</td>
<td>$b \gtrsim 30$</td>
<td>45</td>
<td>2</td>
<td>days</td>
<td>\sim years</td>
<td>0.45</td>
<td>7181</td>
<td>1</td>
<td>\ldots</td>
<td>[5,6,7]</td>
</tr>
<tr>
<td>1.4</td>
<td>2870b</td>
<td>$+32 > \delta > +42$</td>
<td>$24' \times 2.4'$</td>
<td>~ 1000</td>
<td>4 min</td>
<td>1 d</td>
<td>300</td>
<td>\ldots</td>
<td>11</td>
<td>\ldots</td>
<td>[8,9,10,11]</td>
</tr>
<tr>
<td>1.4</td>
<td>0.2</td>
<td>$l = 57$, $b = +81$</td>
<td>20</td>
<td>1852</td>
<td>minutes</td>
<td>1 day–23 yr</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>\ldots</td>
<td>[19]</td>
</tr>
<tr>
<td>1.4</td>
<td>690</td>
<td>$l = 70$, $b = +64$</td>
<td>150</td>
<td>12</td>
<td>> 1 day</td>
<td>days–months</td>
<td>38</td>
<td>4408</td>
<td>0</td>
<td>$\lesssim 0.1%$</td>
<td>[4]</td>
</tr>
<tr>
<td>1.4</td>
<td>690</td>
<td>$l = 70$, $b = +64$</td>
<td>150</td>
<td>5</td>
<td>min</td>
<td>days-years</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
<td>\ldots</td>
<td>[20]</td>
</tr>
<tr>
<td>1.4</td>
<td>0.2</td>
<td>phase calibr.</td>
<td>\ldots</td>
<td>151</td>
<td>5 min</td>
<td>days-years</td>
<td>0.25</td>
<td>425</td>
<td>1c</td>
<td>\ldots</td>
<td>[12]</td>
</tr>
<tr>
<td>3.1</td>
<td>10</td>
<td>$l = 57$, $b = +67$</td>
<td>100</td>
<td>2</td>
<td>months</td>
<td>15 yr</td>
<td>0.05</td>
<td>425</td>
<td>1c</td>
<td>\ldots</td>
<td>[12]</td>
</tr>
<tr>
<td>4.9</td>
<td>0.1</td>
<td>phase calibr.</td>
<td>\ldots</td>
<td>$\sim 390^d$</td>
<td>5 min</td>
<td>days-years</td>
<td>1d</td>
<td>\ldots</td>
<td>0</td>
<td>\ldots</td>
<td>[21]</td>
</tr>
<tr>
<td>4.9</td>
<td>0.09</td>
<td>Extragalactic</td>
<td>0.5-15</td>
<td>2</td>
<td>60 min</td>
<td>1-100d</td>
<td>0.05</td>
<td>\ldots</td>
<td>0</td>
<td>\ldots</td>
<td>[15]</td>
</tr>
<tr>
<td>4.9</td>
<td>23.2</td>
<td>$</td>
<td>b</td>
<td>< 0.4$</td>
<td>5</td>
<td>3</td>
<td>90 s</td>
<td>2 m–15 yr</td>
<td>0.2</td>
<td>2700</td>
<td>0</td>
</tr>
<tr>
<td>4.9</td>
<td>500</td>
<td>$</td>
<td>b</td>
<td>< 2$</td>
<td>180</td>
<td>16</td>
<td>2 min</td>
<td>1 day–5 yr</td>
<td>4.6</td>
<td>1274</td>
<td>1</td>
</tr>
<tr>
<td>4.9</td>
<td>19924</td>
<td>$75 > \delta > 0$</td>
<td>210</td>
<td>2</td>
<td>\sim week</td>
<td>1 yr</td>
<td>5</td>
<td>75162</td>
<td>0</td>
<td>> 40</td>
<td>[17]</td>
</tr>
<tr>
<td>4.9</td>
<td>0.07</td>
<td>$l = 115$, $b = +36$</td>
<td>5</td>
<td>626</td>
<td>20 min</td>
<td>1 week–22 yr</td>
<td>0.05</td>
<td>8</td>
<td>7e</td>
<td>0</td>
<td>[13]</td>
</tr>
<tr>
<td>8.5</td>
<td>0.02</td>
<td>$l = 115$, $b = +36$</td>
<td>3</td>
<td>599</td>
<td>20 min</td>
<td>1 week–22 yr</td>
<td>0.05</td>
<td>4</td>
<td>1f</td>
<td>0</td>
<td>[13]</td>
</tr>
<tr>
<td>8.5</td>
<td>0.04</td>
<td>phase calibr.</td>
<td>\ldots</td>
<td>$\sim 308^g$</td>
<td>5 min</td>
<td>days-years</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
<td>\ldots</td>
<td>[21]</td>
</tr>
<tr>
<td>4.9</td>
<td>2.6</td>
<td>$</td>
<td>b</td>
<td>\approx 7$</td>
<td>15</td>
<td>16</td>
<td>50 s</td>
<td>1 d–2 yr</td>
<td>0.15</td>
<td>~ 200</td>
<td>1</td>
</tr>
</tbody>
</table>
Archival surveys

- DRAO (GRB monitoring)
- NRAO 91-m telescope 7-beam receiver
- Fields of view around VLA phase calibrators
- Comparison of NVSS and FIRST
- Allen Telescope (ATATS/PiGSS) – see later
- Very low transient yields on all of the above (0-1 transients)

Ofek et al. (2011)
i) NASU transients

- 4 drift-scanning interferometers
- Match fringe period to scanning Dec and baseline to ensure celestial and stationary source
- 9 transients >1 Jy over 2 years
- 1.4 GHz
- $32^\circ<\delta<42^\circ$
- High and low l
- Possible AGN?

Matsumura et al. (2009)
ii) Molonglo archival survey

• 22-yr MOST survey at 843 MHz
• 5σ sensitivity <14 mJy/beam
• Covers 2776 deg² south of -30°
• Out of 30,000 sources, 53 highly variable, 15 transient
• Of the transients:
 – 2 XRBs
 – 3 probable scintillating AGN
 – 1 radio supernova (SN 1987A)
 – 1 possible flare star
 – 1 possible RSN/GRB afterglow
 – 7 unknown sources (6 with no optical counterpart)

Bannister et al. (2011)
iii) The Bower transients

- VLA imaging observations of a calibration field
- 944 epochs over 22 years
- 10 transients detected (FDR algorithm expects 1)
- 8 single epoch, 2 in 2-month bins
- Only 2 have host galaxies
- Areal density 1.5 deg$^{-2}$ above 0.37 mJy at any time
 - Order of magnitude greater than known classes of source

Bower et al. (2007)
Defines the expected log N-log S

- Most other surveys only set upper limits on transient rates

Bell et al. (2011)
Reanalysis: only 1 good detection

- Reanalysis by Frail et al. (2011)
 - 5 transients are artefacts
 - 1 not detected
 - 4 have reduced SNR
- Significantly reduced probability of being real

Frail et al. (2011)
So what might we expect?

- We can estimate the rates of known physical phenomena
 - Tidal disruption events
 - Orphan GRBs
 - Mergers
 - Supernovae

- Anything with substantially different rates may be a new source class

- Might the GHz and MHz populations be different?
 - LOFAR
Radio transient survey projects

- V-FASTR
- The LOFAR Transients Key Science Project
- Allen Telescope Array
- ThunderKAT
- ASKAP-VAST
- ASKAP-CRAFT

Credit: Terrace photographers
Allen Telescope Array

• Large N-Small D array
 – Fast moving
 – Low-cost
 – Large field of view (2.5° at 1.4 GHz)
• 42 x 6m dishes
• Compact configuration ($b_{\text{max}}=300\text{m}$)
• Broadband feed (0.5-11 GHz)
• Located at Hat Creek, CA
• Operated by RAL Berkeley and the SETI Institute
ATA surveys: slow transients

• ATA Twenty centimetre Survey (ATATS)
 – 1.4 GHz survey of 700 deg2
 – Transient rate <6x10$^{-4}$ deg$^{-2}$
 (>350 mJy, minutes-days timescales)
• Pi Gigahertz Sky Survey (PiGSS)
 – 3.1 GHz survey
 • 104 deg2 at b>30° twice
 • 11 deg2 fields multiple times
 – No transients found
 – 20% of sources show variability

Bower et al. (2011)
ATA surveys: fast transients

• Fly’s Eye:
 – Point all 42 dishes in different directions
 – 450 h, 150 deg², 1.43 GHz
 – Trades off sensitivity for FoV
 – No new transient pulses detected (650 μs to 5s)
 – Transient rate < 2 sky⁻¹ hr⁻¹ (>44 Jy)

Siemion et al. (2011)
V-FASTR

- Commensal, blind search of all incoming VLBA data
- Searches for short (ms), dispersed radio bursts
- Uses flexibility of DiFX software correlator
- Dispersed antennas robust against RFI
- Automatic imaging capability and high-precision localization

Credit: NRAO/AUI and the SeaWiFS Project NASA/GSFC and ORBIMAGE

Wayth et al. (2011)
V-FASTR

- RFI excised from total power data on a per-antenna basis
- Incoherent de-dispersion across many trial DMs
- Transient detection with robust estimator
- Short segments of data saved around transient event
- Imaging using all ten antennas

Wayth et al. (2011)
Receiver-Operator Characteristic (ROC) curves

- Single-pulse transients must be searched in an automated fashion
- ROC curves characterise detector algorithm performance
- Shows all possible values of false-positive versus true-positive detections
- Set false detection threshold
 - achievable performance is on ROC line

Thompson et al. (2011)
Robust detectors

- Use decision boundaries in signal-strength space
 - Remove strongest/strongest and weakest signals
 - Improves detector performance
- Large n_{ant} and receiver separation helps!
V-FASTR: summary

• 1-σ sensitivity is 0.3 Jy in 1ms; easily sufficient to detect the Lorimer burst

• No new detection to date

• Field of view: 0.27 square degrees

• On-sky time: 4400h to date, and ongoing

• All VLBA frequency bands (1.2-90 GHz)

• Key advances:
 – Fully commensal, no load on existing instrument
 – Ability to localize transients to mas-precision
 – Geographical extent provides good RFI mitigation
LOFAR

- A wide-field software telescope operating from 10-240 MHz
- Dipole antennas of two types
 - LBAs (10-90 MHz)
 - 48/96 per station
 - HBAs (110-240 MHz)
 - 48/96 4x4 tiles per station
- Hierarchically arranged in stations
- Sparse array
 - Dense core in Exloo
 - 40 Dutch stations
 - 8 international stations (France, Germany, Sweden, UK)

Image credit: www.lofar.org
LOFAR: a software telescope

Traditional radio astronomy: delays allow signals from different dishes to be combined to image in one direction.

In LOFAR, simple antennae will be sensitive to whole sky, and introducing different delays allows beam-forming in (multiple) different directions.
LOFAR: key numbers

<table>
<thead>
<tr>
<th></th>
<th>Frequency (MHz)</th>
<th>Collecting area (m²)</th>
<th>(T_{\text{rec}}) (K)</th>
<th>(T_{\text{sky}}) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA</td>
<td>10-90</td>
<td>75200</td>
<td>500</td>
<td>320000-1000</td>
</tr>
<tr>
<td>HBA</td>
<td>110-240</td>
<td>57000</td>
<td>140-180</td>
<td>630-80</td>
</tr>
</tbody>
</table>

- Up to 48 MHz of instantaneous bandwidth
- Up to 244 independent beams (= number of sub-bands)
- Declinations >-30°

Stappers et al. (2011)
LOFAR Key Science Projects

- Epoch of reionization
- Deep extragalactic surveys
- Transients
- Ultra-high energy cosmic rays
- Solar science and space weather
- Cosmic magnetism
The LOFAR Transients Key Science Project (TKP)

• “Exploring and understanding the explosive and dynamic universe by observing transient and variable radio sources”

• Census of particle acceleration in the local Universe

• Studying extreme physics

• Cosmic feedback processes

• Determining the range and origin of coherent phenomena

• Sensitive northern pulsar survey
Classes of transients

- Flare stars, brown dwarfs, active binaries
 - Coherent emission giving highly circularly-polarized bursts

- Planets
 - Jupiter’s magnetosphere and radiation belts
 - Planetary lightning
 - Extrasolar planets?

- Pulsars
 - Survey of new pulsars and fast transients
 - Pulsar timing, pulse profiles and spectra

- Jets
 - Synchrotron emission from CVs, XRBs, SNe, GRBs, AGN

- Serendipity

Osten & Bastian (2006)
Transient detection strategy

• Pointed observations
 – Includes tied-array beamforming
• Commensal observations ("piggybacking")
 – Interrogate all incoming LOFAR data for transients
• Radio sky monitor
 • Tile out a large fraction of the sky
 • All-sky
 • Zenith
 • Galactic Plane
Radio sky monitor

• To tile out the whole hemisphere requires:
 – ~100 pointings at 30 MHz
 – ~1600 pointings at 120 MHz
 – Several minutes per day, giving ~mJy sensitivity

• Zenith monitoring maximizes sensitivity and beam stability
 – Needs ~20/30 pointings at 30/120 MHz
 – Observing each field for ~1h gives sub-mJy sensitivity

• Galactic Plane scans:
 – XRBs, neutron stars concentrated towards the Plane
 – Dispersed, but rich hunting ground for transients
 – 120 MHz only
Transient detection strategy

- Standard imaging pipeline delivers image cubes on a range of timescales
- Python source finding (FDR algorithm)
- MonetDB database generates light curves
- Classification based on LCs and source properties
- VOEvent notification

Swinbank (2011)
Follow-up

• Rapid, accurate localization and follow-up is critical

• Multi-messenger working group has proposals/agreements sampling full SED
 – Gamma-rays: Fermi, MAGIC, HESS
 – X-rays: RXTE, XMM-Newton
 – Optical: WHT, Liverpool Telescope
 – Infrared: PAIRITEL
 – Radio: EVLA, VLBA (no e-VLBI yet!)

• Short-timescale transients necessarily compact
 – VLBI provides only hope of resolved imaging
MeerKAT

- South African SKA pathfinder
- Located in the Karoo region
- KAT-7 now being commissioned
- MeerKAT to follow (complete by 2018)
- Eventually 64 x 13.5m dishes, Gregorian offset feeds
MeerKAT specifications

- Deployment in 3 phases
- Low-frequency (1 GHz) and high frequency (8-14.5 GHz) bands
- Large instantaneous bandwidths for sensitivity

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2016</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor (KAT-7)</td>
<td>MeerKAT Phase 1</td>
<td>MeerKAT Phase 2 & 3</td>
<td></td>
</tr>
<tr>
<td>Number of dishes</td>
<td>7</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Receiver bands (GHz)</td>
<td>0.9 - 1.6</td>
<td>1.00 - 1.75</td>
<td>0.58 - 1.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00 - 1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 - 14.5</td>
</tr>
<tr>
<td>Max processed BW (GHz)</td>
<td>0.256</td>
<td>0.75</td>
<td>2 (goal 4)</td>
</tr>
<tr>
<td>Max baseline (km)</td>
<td>0.2</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Min baseline (m)</td>
<td>20</td>
<td>29</td>
<td>29</td>
</tr>
</tbody>
</table>
MeerKAT transients projects

- Fast transients:
 - TRAPUM: TRA/nsients and PUlsars with MeerKAT (Stappers, Kramer; 3080 hr)

- Slow transients:
 - ThunderKAT: The HUNt for Dynamic and Explosive Radio Transients with MeerKAT (Woudt, Fender; 3000 hr)
TRAPUM

- Targetted pulsar surveys (3000 hr)
 - Globular clusters (MSP-rich)
 - SNRs, PWNe (young, energetic pulsars)
 - Galactic Plane (expect 1000 new pulsars and 100 MSPs)
 - Galactic Centre (expect 100s of pulsars; high ν required)
 - Extragalactic searches (normal pulsars in 15 nearby galaxies)

- Fast transients
 - Commensal searching of all MeerKAT data

- Small dishes implies large FoV
 - Fast surveys
 - Repeated sweeps of the Plane for higher sensitivity
 - More sensitivity to intermittent phenomena (RRATs/eccentric binaries)
ThunderKAT

• All transient synchrotron sources in the Southern Sky

• 100 min/day for 5 years, plus commensal searching
 – 12 deg2 Galactic Bulge survey for faint XRBs ($5\sigma=10\mu$Jy)
 – Surveys of 3 nearby Galaxies (~4 Mpc) (1/day for 150d)
 – Target-of-opportunity observations for outbursting sources
 – Dedicated monitoring of known sources

• LOFAR transients detection pipeline ported for use in ThunderKAT
Commensal observing: the spigot

The ThunderKAT spigot

Correlator

User

CPU cluster running standard imaging pipeline

Data rate for full f.o.v. and full b/w ~700 Mb/sec

≤1 sec cycles

Collaborators / outside world (via e.g. VOEventNet)

Source finding

Imaging (cluster)

Report if interesting

Analysis
ASKAP

- The Australian SKA Pathfinder
- At the Murchison Radio Observatory, in Western Australia
- Phased-array feed technology provides huge field of view
- Commissioning of ASKAP-BETA underway
ASKAP

- 36 x 12m antennas, equipped with PAFs
- 700 – 1800 MHz (instantaneous bandwidth 300 MHz)
- 30 square degree field of view
- Maximum baseline 6km
- Sensitivity 30 μJy/beam in 1 hour
- Resolution 7.5 arcseconds
ASKAP transients projects

- Fast transients:
 - CRAFT: The *Commensal Real-time ASKAP Fast Transients survey* (Macquart, Hall)

- Slow transients:
 - VAST: An ASKAP survey for *Variables and Slow Transients* (Murphy, Chatterjee)
CRAFT

• Purely commensal survey

• Aims to detect <5s transients
 – Giant pulses
 – RRATs
 – Magnetars
 – Lorimer-type bursts

• Large field of view gives high survey figure of merit

• Huge data volumes remain a challenge; trade-off sensitivity, field-of-view, time and frequency resolution

Lundgren et al. (1995)
VAST

• 3 surveys:
 – VAST-wide: $10,000 \text{ deg}^2$ (400 pointings) for 40s each, every day for 2y
 – VAST-deep: VAST-wide: $10,000 \text{ deg}^2$ (400 pointings) for 1h
 – VAST-GP: 750 deg2 (30 pointings) in the Plane, plus the LMC and SMC for 16 min each, weekly, for 1yr

• Commensal observations

• Target sources:
 – Orphan GRBs
 – Unbiased SNe census
 – Propagation effects: IDVs and ESEs
 – Accreting sources (AGN, XRBs, CVs)
 – Flare stars
 – Magnetar outbursts
And finally...the SKA

- 1 million square metres of collecting area
- 3 technologies:
 - Dishes
 - Dense aperture array
 - Sparse aperture array
- To be located in Australia or South Africa
- Construction to begin 2016
- Phase 1 complete by 2020
- Phase 2 complete by 2024

Image credit: SKA website
SKA science

• 5 key science projects:
 • Investigating galaxy evolution, dark energy and cosmology
 • Strong-field tests of gravity using pulsars and black holes
 • The cradle of life; searching for planets
 • Probing the dark ages; the first stars and black holes
 • Investigating the origin and evolution of cosmic magnetism
Instrumental comparison

• Pushing to wider fields and more sensitive instruments
• The SKA is the ultimate goal

Fender (2012)
Prepare for the flood

- How many transients might we expect? (Fender & Bell (2011))

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Snapshot rate (deg$^{-2}$)</th>
<th>Rate per year (deg$^{-2}$ yr$^{-1}$)</th>
<th>Yield (yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKA Phase 2 (Mid)</td>
<td>9.7×105</td>
<td>5.0×107</td>
<td>5.0×107</td>
</tr>
<tr>
<td>SKA Phase 2 (Low)</td>
<td>6.7×103</td>
<td>3.5×105</td>
<td>7.0×107</td>
</tr>
<tr>
<td>MeerKAT</td>
<td>6.9×102</td>
<td>3.6×104</td>
<td>3.6×104</td>
</tr>
<tr>
<td>WSRT + APERTIF</td>
<td>5.0×101</td>
<td>2.6×103</td>
<td>2.0×104</td>
</tr>
<tr>
<td>ASKAP</td>
<td>5.0×101</td>
<td>2.6×103</td>
<td>7.8×104</td>
</tr>
<tr>
<td>LOFAR (HBA) Full</td>
<td>9.8</td>
<td>5.0×102</td>
<td>1.2×104</td>
</tr>
<tr>
<td>LOFAR (HBA) Full ($\alpha = -0.7$)</td>
<td>1.0×102</td>
<td>5.3×103</td>
<td>1.3×105</td>
</tr>
<tr>
<td>LOFAR (HBA) Full ($\alpha = -2$)</td>
<td>8.9×103</td>
<td>4.6×105</td>
<td>1.2×107</td>
</tr>
<tr>
<td>SKA Phase 2 (Low) ($\alpha = -0.7$)</td>
<td>5.5×104</td>
<td>2.8×106</td>
<td>5.7×108</td>
</tr>
<tr>
<td>SKA Phase 2 (Low) ($\alpha = -2$)</td>
<td>2.4×106</td>
<td>1.2×108</td>
<td>2.5×1010</td>
</tr>
</tbody>
</table>

- Uses the Bower et al. (2007) log N-log S
- Scale down by a factor ~10
Some follow-up considerations

- Multi-wavelength follow-up crucial to identifying counterparts
- May be fading by the time (low-frequency) transients detected
- Provides information on physical nature, distance
- High-resolution imaging (VLBI) can provide morphology, proper motion
- Must be available in real time (cf archival studies)
- Pick and choose follow-up candidates (automated classifiers)
- This is where the real physics can be done!
Conclusions

• The field of radio transients is broad, and rapidly-expanding

• Interesting and fundamental physics to be gleaned from transient research

• Primary distinction into fast and slow transients is both physics- and technique-driven

• Enhanced technical capabilities are opening up new regions of parameter space

• With LOFAR, ASKAP, MeerKAT, and, eventually, SKA, we are poised to make major advances in the field of radio transients