Numerical simulations of cosmic structures

Yipeng Jing
Shanghai Jiaotong University

Many Collaborators in SJTU and SHAO

Pengjie, Zhang 张鹏杰, Xiaohu Yang 杨小虎, Chunyan Jiang 姜春艳, Cheng Li 李成, Donghai Zhao 赵东海, Lan Wang 王岚
A third key component: satellites vs. centrals
Smaller satellite galaxies can orbit for a time within larger halos without merging onto the central galaxies.

Taken from S. Faber
The universal mass accretion history of dark matter haloes
Choosing proper variables for modeling

- Given cosmology and power spectrum, after extrapolated linearly to $z=0$, linear mass variance of given volume σ is determined by M, and

$$\sigma(M) \equiv \sigma'(M, z) / D(z)$$

linear critical collapse overdensity δ_c by z.

$$\delta_c(z) \equiv \delta'_c(\Omega_m(z), \Omega_\Lambda(z)) / D(z)$$
Universal differential relation

$w-p$ determines growth rate of halo of mass M

• **LCDM**

Much more accurate than van den Bocsh (2002) or Wecshler et al. (2002)
- SCDM

&

OCDM
Evolution of halo density profile

- Combined with MAHs model we presented in part I, c-t correlation can be used to predict the evolution of halo density profile.

- LCDM1-3
Merging of galaxies
A third key component: satellites vs. centrals
Smaller satellite galaxies can orbit for a time within larger halos without merging onto the central galaxies.
We employed a parallel version of the SPH code GADGET 2 (Springel 2005). The box is $100h^{-1}Mpc$ on a side, with 512^3 dark matter particles and 512^3 gas particles. Gravity is softened with a spline, roughly equivalent to a Plummer force softening of $4.9h^{-1}$ comoving kpc. There are totally 177 snapshots from $z=19$, among which 28 are before $z=3.5$, and 149 are at $z \leq 3.5$. Present time $z = 0$ with an equal logarithmic scale factor interval $\Delta \ln a = 0.01$ between two consecutive outputs. The large number of the outputs enables us to accurately sample orbits of satellites within massive haloes, with about 8 outputs for one dynamical crossing time. Both the good force resolution and the dense sampling of snapshots are crucial for the current study.
Two types of merger timescales in literature

• The time duration for a satellite falling into the central galaxy from the first crossing of the virial radius of host DM halo; important of theoretical modeling, such as in SAMs;
• The time duration for a close pair of galaxies at a fixed separation (small) to merge; important for observations
Fitting formula

\[T_{\text{fit}} = \frac{0.90 \epsilon^{0.47} + 0.60}{2C} \frac{m_{\text{pri}}}{m_{\text{sat}}} \frac{1}{\ln[1 + \left(\frac{m_{\text{pri}}}{m_{\text{sat}}}\right)]} \frac{\sqrt{r_{\text{vir}}/r_c}}{V_c}, \]

Corrections:

1) Mass loss: a factor of 2 longer

2) Motion of the central galaxies and dynamical evolution: weak dependence on \(\epsilon \) (orbital circularity)

3) Dependence on the DM mass of the primary and satellite: the Coulomb logarithm

4) Scatter: 40% reflecting hierarchical formation and diversity of host halos

Jiang et al. 2008
The second merger timescale

- A merger time for close pairs of certain mass (luminosity) and separation, related to measure the merger rate from the counts of close pairs in observations
- (Jiang, YPJ, Han, 2013, astroph/1307.3322)
Theoretical framework for understanding evolution of galaxies and dark matter halos

A third key component: satellites vs. centrals
Smaller satellite galaxies can orbit for a time within larger halos without merging onto the central galaxies.
Some scaling considerations

\[T_{\text{fit}} = \frac{0.90 \epsilon^{0.47} + 0.60}{2C} \frac{m_{\text{pri}}}{m_{\text{sat}}} \frac{1}{\ln[1 + \left(\frac{m_{\text{pri}}}{m_{\text{sat}}} \right)]} \frac{\sqrt{r_{\text{vir}} r_c}}{V_c}, \]

Considering \(v_c \approx \sqrt{\frac{G m_{1,v}}{r_{1,v}}} \) in the primary halo,

\[T_{\text{mg}} \propto \frac{m_{1,v}^{1/2} r_p^2}{G^{1/2} m_2 \ln \Lambda r_{1,v}^{1/2}}. \]

The volume merger rate can be written as

\[\Phi = C_{\text{mg}} n_1 n_p(< r_p)/T_{\text{mg}}, \]

Replacing \(T_{\text{mg}} \) in equation (1) with equation (2), obtain

\[\Phi = A_* \frac{G^{1/2} m_2 r_{1,v}^{1/2} n_1 n_p(< r_p)}{m_{1,v}^{1/2} r_p^2}. \]
More scaling considerations

• The retained mass of the satellite: \(m_{2,v} \frac{r_p}{r_{1,v}} \).
 – Correct when DM halo is an isothermal sphere of; but good for real DM halos
• With the definition of halos (200 critical density) and cosmological parameter relations, we have

\[
T_{mg} \propto \frac{m_{1,v}}{m_{2,v}} \left[m_{1,v} G H_0 E(z) \right]^{-1/3} r_p \\
\Phi = B_* \frac{m_{2,v} n_1 n_p(< r_p) [m_{1,v} G H_0 E(z)]^{1/3}}{m_{1,v} r_p}.
\]

\[E(z) = \Omega_\Lambda + \Omega_m (1+z)^3 \text{ : dimensionless Hubble parameter (i.e. } H(z) \text{ in unit of } H_0) \]
When the retained mass is considered for the satellites:
1) For different masses of central and satellites
2) For different redshifts
for the different separations

\[r_p = \frac{50}{1+z} \ h^{-1}\text{kpc}^{10} \]

\[r_p = \frac{150}{1+z} \ h^{-1}\text{kpc} \]
Applications to observations

• Measure the pair count per unit volume of stellar masses \(m_{1,s} \) and \(m_{2,s} \) (or luminosities)

\[
N_p(< r_p) = n_1 n_p(< r_p)
\]

– \(n_1 \) is the density of galaxy 1 and \(n_p \) is the number count within projected \(r_p \) (corrected for the background) of galaxies 2 around galaxy 1

• Volume merger rate: \(\Phi = N_p(< r_p)/T_{mg} \)

• Merger rate of G 1 and G 2: \(n_p(< r_p)/T_{mg} \)

\[
T_{mg(< r_p^{proj})} = \frac{10^{-0.23}}{0.66} \frac{m_{1,v}}{m_{2,v}} \frac{[m_{1,v} GH_0 E(z)]^{-1/3}}{r_p}
\]