Fast photometry at the Thai 2.4m telescope
Collaborators

Andrea Richichi
Boonrucksar Soonthornthum
Saran Poshyachinda
Puji Irawati
National Astronomical Research Institute of Thailand

Vik Dhillon
Univ. of Sheffield

Agnieszka Słowikowska
Univ. of Zielona Góra, Poland
Timing Considerations

- Stellar Physics
- Solar System
- Fundamental astronomy

- Pulsars
- Lunar Occultations
- Oscillations
- Flares
- Transits
Thai National Telescope (TNT)

- 2.4m alt-az Ritchey-Chretien, f/10
- Two Nasmyth foci
- Nasmyth 1 with derotator, 4 ports, autoguider, fiber feeds
- Imagers and spectrographs, visitor instruments
- Erected 2012, Inaugurated 2013
- First official season (Cycle 1) to start in November 2013, Call for Proposals, TAC

Also operated by NARIT:

- 0.5m f/6.5 (planning 0.7m)
- 60cm PROMPT8 robotic telescope at Cerro Tololo (incl. polarimeter)
High-Time Resolution Instrumentation at TNT

CCDs
- Apogee U9000 with drift-scan
- ANDOR iKon-L936 in subwindow mode
- up to 2ms, with limitations in time coverage

ULTRASPEC
- EMCCD, avalanche mode, frame transfer
- LN$_2$ cooled
- 1kx1k, 7.7 x 7.7 arcmin
- switchable gain
- 0.005s in subframes

OPTIMA (TBC)
- 12 APDs, fiber-fed
- photometry, polarimetry
- 10$^{-6}$ s resolution
- accurate GPS timing
- plans for Cycle 2 visitor instrument at TNT
ULTRASPEC @ TNT

Built by Sheffield/Warwick/UKATC

PI: Vik Dhillon, Univ of Sheffield

- Frame-transfer EMCCD
- Previously used on ESO3.6m and NTT
- MoU signed with NARIT in 2012
- New Optics (0.45”/pixel, 7.7’ FOV)
- 2 filter wheels, wide options
- At TNT: g’=24 in 30 min @ SNR=10 (TBC)
- Subframe readouts up to 400+ Hz
- Compact objects (isolated and in binaries), transients/survey follow-up
- Installation Aug 2013
- Commissioning Nov 2013
- 22 nights GTO in Cycle 1
ULTRASPEC GUI
ULTRASPEC Science

KSP1: **PULSARS** - both isolated (i.e. AXPs, SGRs, RRATs, XDINS, radio pulsars, Fermi pulsars) and in binaries (e.g. MSPs).
 - Leader: Dhillon (Sheffield)
 - NN Ser: an eclipsing WD+RD detached binary (ULTRACAM)

KSP2: **ECLIPSING CATAclySMIC VARIABLES** - focusing on mass/radius determinations.

KSP3: **TRANSIENTS** - follow-up of various transient surveys, e.g. LOFAR, GAIA, LIGO, etc.
 - Leader: Dhillon (Sheffield)

KSP4: **DETACHED WHITE DWARF BINARY STARS** - both WD/dM and WD/WD systems.
 - Leader: Marsh (Warwick)

KSP5: **PULSATING WHITE DWARFS** - primarily in binaries, but also including isolated WDs
 - Leader: Gaensicke (Warwick)

KSP6: **AM CVN STARS**
 - Leader: Steeghs (Warwick)

KSP7: **GAMMA-RAY BURSTS**
 - Leader: Levan (Warwick)

KSP8: **OCCULTATIONS AND TRANSITS**
 - Leader: Richichi (NARIT)

Brinkworth et al. (2006)
Later detections of planet(s) (Chen 2009, Parsons 2009, Qian 2009)
Optical Timing Analyzer (OPTIMA)

Gottfried Kanbach & Arne Rau
Max-Planck-Institut für Extraterrestrische Physik, Germany
Agnieszka Słowikowska
University of Zielona Góra, Poland

- Photon counting APD detectors, $\lambda = 450-900$ nm
- Seeing-matched fibers with background subtraction
- Estimated $m_v = 20$ in 1 s at TNT
- Polarimetric mode
- μs resolution, 5ns timing relative to GPS
- Fast variable sources: pulsars, magnetars, cataclysmic variables, X-ray binaries, flare stars
- Possible deployment at TNT in Nov 2014 (Crab)

OPTIMA at the 1.3m telescope in Skinakas (Crete, Greece)
The extremely short orbital period of 79m 04s and eclipse duration of 98.7s show this system to be in an extreme state of binary evolution.

Sharp ingress/egress and flat bottom (i.e. no change in brightness)

Overall minimum of lightcurve (m ~ 20) is deeper than eclipse:

- There must several components of emission:
- The bright spot (small and well defined)
- An accretion disk or stream
- The irradiated secondary

(Rau et al in preparation, 2013)
The Crab pulsar: time-resolved polarization

HTR projects at TNT in Cycle 1

Nov 5-13, 2013: **ULTRASPEC** on-sky commissioning and first GTO science
Total of 22 nights GTO, including Jan and Mar 2014

(preliminary Open Time allocation, TBC)

39 full and **13 partial** nights dedicated to ULTRASPEC, most requested instrument
Pulsations, Exoplanet Transits, Lunar Occultations, Trans-Neptunian Occultations, Times of Minima in Compact Binaries, Flickering in Cataclysmic Variables, as well as faint objects

Example of an "easy" lunar occultation

The occultation of a R=16.5 mag star by the TNO 2003-VS2, predicted to be visible from Doi Inthanon on November 26, 2013.
V426 Oph: nova-like CV
WD + K3V, P=6.8h
flickering known, but not
extensively measured

July 2013, NTT+SOFI in J & K
(P. Irawati, 3 nights)
First time fast observations in the
near-IR, best SNR and highest time
resolution ever (0.3s)

Flickering: ~5-10% ampl over minutes
more in J than in K
no structure seen < few seconds
Concluding Remarks

- The Thai 2.4m telescope is ideally equipped to pursue high-time resolution observations
- Short events (few seconds) can be sampled up to 2ms using specialized modes on commercial CCDs
- The state-of-the-art ULTRASPEC instrument can be used for fast imaging on fields from 7’x7’ to 4”x4” with speeds up to 4ms
- Cycle 1 observations about to start, restricted to Thai and MoU institutes (shared-risk basis)
- Cycle 2 plans include more science nights in an open call
- Addition of OPTIMA as a visitor instrument for resolutions up to μs
- Emphasis on collaborative networks for transients and transits
- Complement the 2.4m by adding observational opportunities at other sites co-funded by NARIT
Extra Slides
NARIT and the TNO

- National Astronomical Research Institute of Thailand
- Public Organization (Min. of Science and Technology)
- 100+ staff, of which ~10 Thai and international researchers and postdocs
- stellar and extragalactic astrophysics, cosmology, optical and radio, theory and observations

NARIT Mission:

- develop human resources and technology
- leading astronomical center in SE Asia
- establish international collaborations (SEEAN)
- additional strategic directions: Antarctica, Radio Astronomy, Climate
Doi Inthanon at 2,457 m above mean sea level

Latitude : 18 deg 34’ 21” N
Longitude : 98 deg 29’ 7” E

Observing window : October to May
Average seeing : ~1 arcsec
Typical temperatures : +5°C to +15°C
Mostly above the local inversion layer, located in a protected National Park
Drift-Scanning CCDs

- affordable
- ms Time Resolution
- choice of pixel (low background noise)
- need correct pixel scale
- limited time range

TNO 2.4m has Apogee 9000 with 2ms time resolution

Fors et al (2001)
Subwindows

- ms Time Resolution
- gapless
- long time range
- expensive
- sophisticated ROE

Now also implemented on CCDs

ARNICA (Richichi et al. 1996)
Example of a binary star (easy)

Sep = 41 mas
Br. Ratio = 2.2 : 1
Example of a binary star (harder)

2MASS17073892-2554521, K=5.21

$\chi^2=2.8$
Example of a binary star (harder)

2MASS17073892-2554521, \(K = 5.21 \)

\[\chi^2 = 1.2 \]
Networking Considerations
RXS J1845+4831 Summary:

Aligning all eclipses measured in 2011 and 2012, we find an eclipse (ingress) ephemeris of $P_{orb} = 0.054907167(2) \, \text{d}$ corresponding to 79 min 03.97923 (17) s with HJD0(UTC)=2455733.301427.

The eclipse duration is 98.7s. Sharp ingress/egress and flat bottom (i.e. no change in brightness)

Overall minimum of lightcurve ($m \sim 20$) is deeper than eclipse

→ There must several components of emission
→ - the bright spot (small and well defined
→ - an accretion disk or stream
→ - the irradiated secondary
→
(ref. to Horne et al., 1994)